
Statistical characterization of ensembles of symmetric virus particles:
3-D stochastic signal reconstruction from electron microscope images *

Nan Xu1, Peter C. Doerschuk2

Abstract— Stochastic models of nano-biomachines have been
studied by 3-D reconstruction from cryo electron microscopy
images in recent years. The image data is the projection of
many heterogeneous instances of the object under study (e.g.,
a virus). Initial reconstruction algorithms require different
instances of the object, while still heterogeneous, to have the
same symmetry. This paper presents a maximum likelihood
reconstruction approach which allows each object to lack
symmetry while constraining the statistics of the ensemble of
objects to have symmetry. This algorithm is demonstrated on
bacteriophage HK97 and is contrasted with the former algo-
rithm. Reconstruction results show that the proposed algorithm
provides estimates that make more biological sense.

I. INTRODUCTION

In virology, there is a large class of plant and animal
viruses called “spherical” viruses, in which the particle has
a shell of protein, called a “capsid”, surrounding a cavity
containing the viral genome. Typical sizes and molecular
weights of the virus particles are 102–103Å and 10MDa. The
capsid is constructed of many repetitions of the same peptide
molecule in geometric arrays similar to human-constructed
geodesic domes. The geometry of these spherical viruses
is important to their lifecycle. Cryo electron microscopy
(cryo EM), which has become an important technique for
determining the geometry of a particle, leads to 3-D image
reconstruction problems for these biological nanomachines.
Specifically, 103−106 virus particles are flash frozen to cryo-
geneic temperatures and imaged. Each image is basically a
highly-noisy (SNR < 0.1) 2-D projection of the 3-D electron
scattering intensity distribution of the particle. Only one such
image can be taken per particle and its projection orientation
is unknown. Therefore, the information from many such
images is fused to compute a 3-D reconstruction [1].

In x-ray crystallography, the capsid of spherical virsus has
a geometric symmetry, of which the most common is icosa-
hedral symmetry–the symmetry group of an icosahedron–
which is invariant under a total of 60 rotational symmetry
operations. Standard reconstruction approaches [2]–[5] as-
sume that the particles are either identical or are members
of a small number of discrete classes where every particle in
a class is identical. In [6], [7], a reconstruction approach was
presented, which includes both discrete classes and continu-
ous variability of the particles within each class. Within one
class, the basic assumption on the virus particles [2]–[5] is
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that each instance of the virus particle is identical and exactly
obeys the icosahedral symmetry. An improved assumption
introduced in [6], [7] is that instances are different from each
other (for example, due to the inherent flexibility of such
a large molecular complex) but still each instance exactly
obeys the icosahedral symmetry.

In contrast to this previous work, this paper considers a
more realistic and sophisticated view: The different instances
of the particle are different and it is the statistics of the
particle that obey the symmetry not the individual instances.
In particular, the mean and covariance of the 3-D electron
scattering intensity distribution of the particle obey [8]:

ρ̄(R−1g x) = ρ̄(x) and Cρ(R−1g x1, R
−1
g x2) = Cρ(x1,x2),

(1)
where ρ̄(·) is the mean function and Cρ(·, ·) is the covariance
function of the electron scattering intensity ρ(·), Rg ∈ IR3×3

is the gth rotation matrix of the symmetry group, and
x,x1,x2 ∈ IR3 are real-space coordinates.

Conditional on class membership, each particle can be
described as a linear combination of basis functions where
the weights in the linear combination are Gaussian random
variables [6], [7]:

ρ(x) =
∑
ζ

Fζ(x)cζ (2)

where Fζ(x) is the basis function and cζ is the weight.
Because ρ(·) is real, it is convenient to have real-valued basis
functions and weights. To describe the situation in which par-
ticles have non symmetric structures but symmetric statistics,
a complete orthonormal set of real-valued basis functions
with specific rotational properties under the operation of the
icosahedral group is required (Section II).

The maximum likelihood (ML) reconstruction algorithm
can estimate the mean vector and covariance matrix of the
vector of weights cζ , which is a generalization of classi-
cal ML Gaussian mixture parameter estimation [9]. After
choosing appropriate basis functions, the estimates of the
mean vector and covariance matrix need to be constrained
in order to realize the two statistical symmetries (Section III).
The reconstruction results are demonstrated and discussed in
Section IV.

II. REAL-VALUED BASIS FUNCTIONS

A complete orthonormal set of real-valued basis functions
is needed to describe both the angular and the radial behav-
iors. Each real-valued basis function Fζ(x) is a product of
an angular basis function and a radial basis function, and
both angular basis and radial basis functions are complete
real-valued orthonormal sets on their respective spaces.
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The real-valued angular basis functions [8] characterize
the behavior around the surface of a sphere and include the
symmetry properties of the particle, since the symmetries
are all rotational. A key concept used in this approach
is the group irreducible representations (irred reps), which
are sets of matrices that are homomorphic under matrix
multiplication to the elements of an abstract group [10].
Let the matrices in the pth irred rep be denoted by Γp(g)
where p ∈ {1, . . . , Nrep} (Nrep is the number of irred reps)
and g ∈ {1, . . . , Ng} (Ng is the number of elements in the
group). For the icosahedral group, Nrep = 5 and Ng = 60.
The dimension of the matrices in the pth irred rep are
dp × dp where, for the icosahedral group, dp = 1, 3, 3, 4, 5
for p = 1, 2, 3, 4, 5, respectively. The resulting angular
basis functions described as linear combinations of spherical
harmonics of fixed index l ∈ N, denoted by Ip;l,n(x/x) for
n ∈ {1, . . . , Np;l}, have the following properties.

1) Each Ip;l,n is a dp-dimensional real-valued vector
function, i.e., Ip;l,n ∈ Rdp .

2) The Ip;l,n functions are orthonormal on the surface of
the sphere.

3) The subspace of square integrable functions on the
surface of the sphere defined by spherical harmonics
of index l, contains a set of Ip;l,n functions with a total
of 2l + 1 components.

4) The family of Ip;l,n is a complete basis for square
integrable functions on the surface of the sphere.

5) Each Ip;l,n function has a specific transformation prop-
erty under rotations from the icosahedral group [10,
p. 20], in particular,

Ip;l,n(R−1g x/x) = (Γp(g))T Ip;l,n(x/x) (3)

where T is transpose not Hermitian transpose.

p = 1 p = 2

p = 3 p = 4 p = 5
Fig. 1: An icosahedron with one of each type of symmetry
axis (2-, 3-, and 5-fold) shown and example angular basis
functions with l = 15 and p ∈ {1, . . . Nrep}. The surfaces
of 3-D objects are defined by ξ(x) = 1 for x ≤ κ1 +
κ2Ip;l,n(x/x) and 0 otherwise, where κ1 and κ2 are chosen
so that κ1+κ2Ip;l,n(x/x) varies between 0.5 and 1. These 3-
D surfaces are visualized by UCSF Chimera where the color
indicates the distance from the center of the object.

Examples of Ip,j;l,n functions for l = 15 are visualized in
Figure 1. Note that the p = 1 exhibits all of the symmetries
of an icosahedron. The previous algorithm, which used the
Ip=1,j;l,n angular basis functions only [6], [11], requires each

virus object to obey the icosahedral symmetry. The range of
behavior of a non-symmetric particle that leads to symmetric
statistics is illustrated by the p ∈ {2, . . . , 5} plots.

Let Ip,j;l,n be the components of Ip;l,n for j ∈
{1, . . . , dp}. The real-valued basis function being used is
Fp,j;l,n,q(x) = Ip,j;l,n(x/x)hl,q(x), where the radial basis
functions hl,q(x) for q ∈ {1, 2, . . . } are exactly the family
of Bessel functions used in [12], which form a complete
orthonormal set on R+ ∪ {0}.

III. STATISTICAL CHARACTERIZATION OF
SYMMETRICAL PARTICLES

The symmetrical virus particles are statistically charac-
terized by Eq. 1. The constraints on the mean vector and
covariance matrix of the Gaussian weights cp,j;l,n,q in Eq. 2
induced by these two symmetry requirements are derived and
applied to the maximum likelihood reconstruction algorithm.

Specifically, to achieve ρ̄(R−1g x) = ρ̄(x), a constraint on
the mean of cp,j;l,n,q, denoted by c̄p,j;l,n,q, is required:

c̄p,j;l,n,q = c̄l,n,qδp,1. (4)

Note that because p = 1 implies j = 1 [7], j is not needed
on the right-hand side of Eq. 4.

The second order statistics of cp,j;l,n,q, in
particular, the covariance matrix V with components
Vp1,j1;l1,n1,q1:p2,j2;l2,n2,q1 , are constrained by the symmetry
on the covariance function (Eq. 1). After expanding
Cρ(R

−1
g x, R−1g x′) = Cρ(x,x

′) by applying the orthonormal
expansion (Eq. 2) and the icosahedral symmetry property
(Eq. 3), the simplified result becomes a linear system in the
covariance matrix V , where the coefficients are the irred rep
matrices Γp(g). The solution of the covariance matrix V is
constrained by the group properties of the irred rep matrices
Γp(g). In particular, Schur’s Lemma [10, Theorem I and II,
Section 4.5, p. 80] and related results imply that the V
matrix has the structure

Vp1,j1;l1,n1,q1:p2,j2;l2,n2,q2

= δp1,p2δj1,j2vp1(l1, n1, q1 : l2, n2, q2) (5)

where vp1(l1, n1, q1 : l2, n2, q2) is an arbitrary function for
the six indices q1, q2 ∈ {1, 2, . . . }, p1, p2 ∈ {1, . . . , Nrep},
j1 ∈ {0, 1, . . . dp1}, j2 ∈ {0, 1, . . . dp2} l1, l2 ∈ {0, 1, . . . },
n1 ∈ {0, . . . , Np1;l1 − 1}, and n2 ∈ {0, . . . , Np2;l2 − 1} .

Now suppose that V is diagonal. Let ν = diag(V ). Then
νp,j;l,n,q = αp;l,n,q, where αp;l,n,q has arbitrary dependence
on the four indices. In other words, ν does not depend on
the j index. In previous algorithms [6], [11], which require
every individual particle to exactly obey the symmetry, only
the p = 1 functions are allowed. That means that only the
case of dp=1 = 1 is used, so that j = 1 and Γp=1(g) = 1. In
this case, νp=1,j=1;l,n,q = αp=1;l,n,q, so that the covariance
matrix V is not constrained.

Following [7], a maximum likelihood estimator is used
to determine the mean vector and covariance matrix of
cp,j;l,n,q. The maximum likelihood estimator is computed
by an expectation-maximization algorithm in which the nui-
sance parameters are the projection direction orientation for
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each image and the class of particle shown in each image.
In our problem, two quantities, the mean and the covariance
of the weights cp,j:l,n,q, are updated alternatively in the
expectation-maximization algorithm. A previous algorithm,
which used a subset of the proposed angular basis functions
(i.e., just p = 1) [6], [11], used Matlab’s fmincon (option
“trust-region-reflective”) with symbolic cost, gradient of the
cost, and Hessian of the cost. We desired to modify the
software to include the full set of basis functions described
in Section II. The constraint on the mean vector (Eq. 4)
requires its entries to be zero if p 6= 1. The constraints on the
covariance matrix V (Eq. 5) require certain matrix elements
to be equal. To implement the above constraints, the method
of computing the gradient and Hessian of the cost is modified
based on the chain rule: if f is the cost then

∂f

∂ζp;l,n,q

=

dp∑
j=1

∂f

∂νp,j;l,n,q

,

∂2f

∂ζp1;l1,n1,q1
∂ζp2;l2,n2,q2

=

dp1∑
j1=1

dp2∑
j2=1

∂2f

∂νp1,j1;l1,n1,q1
∂νp2,j2;l2,n2,q2

.

These equations compute the necessary gradient and Hessian
in terms of larger vectors and matrices which are then
reduced in size. While this approach fits the software easily,
more efficient approaches may be possible.

IV. RECONSTRUCTION OF VIRUS PARICLE

The proposed algorithm, heterogeneous reconstruction
with statistical icosahedral symmetry (HRSIS), is compared
with a previous algorithm, heterogeneous reconstructions
with individual icosahedral symmetry (HRIIS) [6], [11]. The
proposed algorithm (HRSIS) strictly contains the previous
algorithm (HRIIS) as a special case, because HRIIS uses only
the p = 1 angular basis functions and has no constraints on
the mean vector or covariance matrix of the weights, whereas
HRSIS uses all p ∈ {1, 2, 3, 4, 5} angular basis functions
and has the constraint on the mean vector (Eq. 4) and the
covariance matrix (Eq. 5).

These two reconstruction algorithms were tested on a
Virus Like Particle (VLP) derived from bacteriophage HK97
Prohead I+pro. Specifically, the VLP is bacteriophage mi-
nus the bacteriophage’s tail leaving only the icosahedrally
symmetric capsid. The average outer radius of the capsid
is 254Å. A stack of 1200 cryo-EM images was randomly
selected. Each 2-D cryo-EM image measuring 200 × 200
pixels with a pixel size of 2.76Å contains one bacteriophage
HK97 Prohead I+pro particle. Following the preprocessing
procedure in Refs. [6], [7], these 1200 cryo-EM images were
transformed into 1200 2-D images in reciprocal space, which
became the input to reconstruction algorithms.

The reconstruction was computed in two steps. First,
the Gaussian weights cp,j;l,n,q in Eq. 2 were computed by
a homogeneous reconstruction algorithm described in [7]
which used only the p = 1 angular basis functions and had
the covariance V = 0. Second, using the computed Gaussian
weights as the initial condition, the new weights cp,j;l,n,q
and the electron scattering intensity ρ(x) were computed by
heterogeneous reconstruction algorithms, HRIIS and HRSIS.

(a) individual icosahedral (b) statistical icosahedral
symmetry (HRIIS) symmetry (HRSIS)

Fig. 2: 3-D reconstructions of ρ̄ for HK97 Prohead I+pro

(different colormap). The shape is a surface of constant
intensity (8×10−5) of ρ̄(x) colored by the standard deviation
sρ(x), which is visualized by UCSF Chimera [13]. The
HRIIS and HRSIS reconstructions use different color maps.
All markings are scaled by 10−3.

From the mean vector and covariance matrix of cp,j;l,n,q,
we are able to compute the mean function [7, Eq. 16],
ρ̄(x) = E[ρ(x)], and the covariance function [7, Eq. 18],
Cρ(x1,x2) = E[(ρ(x1) − ρ̄(x1))(ρ(x2) − ρ̄(x2))], of the
electron scattering intensity ρ(x) of the particle. The standard
deviation sρ(x) =

√
Cρ(x,x), which has the same units

as ρ̄(x), is also computed for visualization purposes. In
Fig. 2, ρ̄(x) and sρ(x) estimated by HRIIS and HRSIS
are jointly visualized. Specifically, a 3-D surface of constant
value of ρ̄(x) is colored by the value of sρ(x). In Fig. 3,
three perpendicular cross sections of the standard deviation
function sρ(x) estimated by HRIIS and HRSIS are shown.

Two primary distinctions are observed. First, HRIIS gives
a covariance function that is organized in radially-directed
rays (Fig. 2(a)), whereas HRSIS gives a covariance function
that is organized in annular structures (Fig. 2(b)). Such an
annular structure, as is obtained by HRSIS, matches the
physical structure of the particle: the outer protein shell and
the inner core of nucleic acid. This makes more biological
sense than the estimates from HRIIS. Such a distinction can
also be seen in Fig. 3, in which the second row has dark
blue radial lines, whereas the third row shows the detailed
annular structure of the virus. In the previous analyses
using HRIIS [14], features like high values located along
radially directed lines were averaged out leaving interpretable
information, but as we try to increase the spatial detail of our
interpretation, such behavior is difficult to understand.

Second, HRSIS gives a covariance function with larger
dynamic range (0–18.37× 10−3) than the earlier HRIIS (0–
5.28 × 10−3). This can be clearly seen in Fig. 3 where the
same color map is used for both HRSIS and HRIIS. The
standard deviation estimated by HRIIS is essentially pure
blue at the lowest level of the color map, while HRSIS
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Cross sectional view geometry

Individual icosahedral symmetry (HRIIS)

Statistical icosahedral symmetry (HRSIS)
Fig. 3: Cross section of the standard deviation function sρ(x)
for HK97 Prohead I+pro using both HRISS and HRSIS and
displayed with a common color map.

contributes to a broader range of colors. This is due to the
fact that HRSIS uses a larger family of basis functions than
is used by HRIIS and therefore can represent features that
HRIIS averages away.

HK97 [15] is a bacteriophage with tens of protein con-
stituents that self assemble and then undergo a complicated
maturation process leading to an increase in diameter of the
particle by about 100Å. Most structural biology is performed
on VLPs which have subsets of the constituents, are not
infectious virus particles, and are produced in bacterial hosts.
In collaboration with Profs. J. E. Johnson (TSRI) and D.
Veesler (U. Wash.) we are comparing two VLPs. Both VLPs
have the capsid but lack the tail of the native particle. The
first is basically just the 420 copies of the capsid protein
and stops maturation at the Prohead I phase because it
cannot cleave the capsid peptides which is the next step in
maturation. The second is basically just the 420 copies plus
about 60 copies of the protease which cleaves the capsid
peptide. However, the protease is defective so maturation
stops at the same Prohead I phase. While maturation stops
at the same phase in both particles, the particles are quite
different because the protease (located on the inner surface
of the capsid) stabilizes the capsid [14]. The biological goal
of these calculations is to understand how the binding of
the protease on the inner surface of the capsid influences
the entire capsid via understanding the covariance function
Cρ(x1,x2) for x1 6= x2 and especially with the two locations
at different distances from the center of the particle. This
could not be achieved previously [14] because the covariance

function Cρ(x1,x2) of ρ(·) at different locations could not
be interpreted do to the limited number of angular basis
functions that were used.
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