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ABSTRACT

In single-particle cryo electron microscopy, many electron microscope images each of a single instance of a biolog-
ical particle such as a virus or a ribosome are measured and the 3-D electron scattering intensity of the particle is
reconstructed by computation. Because each instance of the particle is imaged separately, it should be possible
to characterize the heterogeneity of the different instances of the particle as well as a nominal reconstruction of
the particle. In this paper, such an algorithm is described and demonstrated on the bacteriophage Hong Kong
97. The algorithm is a statistical maximum likelihood estimator computed by an expectation maximization
algorithm implemented in Matlab software.

Keywords: 3-D image reconstruction, statistical image processing, maximum likelihood estimation, expectation
maximization algorithm, structural biology, virus, Hong Kong 97

1. INTRODUCTION

The geometric relationships among the components of a nanoscale biological machine such as a virus, ribosome,
or enzyme are an important part of understanding the functioning of the machine and are the subject of structural
biology. The most famous source for atomic-resolution information is x-ray crystallography. However, in recent
years, single-particle cryo electron microscopy (cryo EM) has begun to provide information that is approaching
atomic resolution due to improvements in both the image detectors and the computational tools.1 In comparison
with x-ray crystallography, cryo EM has the advantage of separately collecting information on each instance
of the machine while x-ray crystallography collects information collectively on the large ensemble of instances
that occur in the crystal. Therefore, cryo EM seems a likely basis for understanding the heterogeneity among
the instances. In cases where the heterogeneity is discrete, i.e., that each instance belongs to a particular class
of instances and all instances in a class can at least approximately be thought of as identical, then successful
tools exist.1 In this paper we describe a mathematical model and the resulting reconstruction algorithms that is
focused on characterizing the continuous heterogeneity of particles within a discrete class.

In cryo EM, an aqueous specimen containing thousands of particles is flash frozen to cryogenic temperatures
and imaged in the frozen state in an electron microscope. The reasons for freezing include reduction of the
damage to the particles by the electron beam and the desire for a solid specimen. The image is basically a
highly-noisy (SNR < 0.1) 2-D projection of the 3-D electron scattering intensity distribution of the particle.
Primarily because of damage by the electron beam, only one projection is taken and the orientation of the
projection direction is unknown and cannot be determined from the image because of low SNR. So, instead of
reconstructing based on a full set of oriented projection images of a single particle, as is done in x-ray computed
tomography in medical imaging, many images each of different instances of the particle and with different and
unknown projection directions must be computationally combined to compute the reconstruction.2 Standard
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Figure 1. An icosahedron with one example of each type of rotational symmetry axis (2-, 3-, and 5-fold) shown.

approaches assume that the particles are either identical or are members of a small number of discrete classes
such that all particles in a class are identical.

We have developed and demonstrated3,4 an approach to reconstruction which includes both discrete classes
and continuous variability of the particles within each class. Conditional on class membership, each particle
is described as a linear combination of fixed basis functions where the weights in the linear combination are
Gaussian random variables. The goal of the maximum likelihood (ML) reconstruction procedure is to determine
the mean vector and covariance matrix of the vector of weights, which is a generalization of classical ML Gaussian
mixture parameter estimation.5

Geometric symmetry of the particle is sometimes an important feature of the particle. Since the particle is
of finite extent, such symmetries are point group symmetries [6, p. 26]. Therefore, there is at least one location
in the particle that remains fixed under all of the symmetry operations and we take one such location as the
origin of the coordinate system. Since the biological molecular constituents of the particle almost always have a
fixed handedness, e.g., the biological amino acids are levo isomers, the point groups are of the first kind which
contain only rotations. Because of our collaboration with Professor John E. Johnson (The Scripps Research
Institute) and his colleagues, we have focused on viruses and for viruses the most important symmetry group
is the icosahedral group with 60 operators (rotations of order 5, 3, and 2) and only one location which is fixed
under all symmetry operations. The icosahedral group is the symmetry group of the icosahedron and a diagram
of an icosahedron with examples of each type of symmetry axis is shown in Figure 1. An particle having this
symmetry, however, need not look at all like an icosahedron! One of the contributions of this paper is to show
how the same ideas and nearly the same software can also be used for particles with other symmetries, including
no symmetry.

Our current Matlab software running on a desktop PC can solve problems with about 103 weights and achieve
resolutions of 15–20Å on icosahedrally-symmetry (Figure 1) particles of diameter 432Å.3 However, resolution
twice as good, probably requiring 23 = 8 times as many coefficients, or even four times as good, perhaps
requiring 43 = 64 times as many coefficients, is desirable. Furthermore, particles without symmetry require
roughly 60 times as many coefficients since there are 60 symmetry operations in the icosahedral group. In order
to achieve such gains in computational performance, another contribution of this paper is to present algorithmic
improvements and software improvements.

2. THE MATHEMATICAL MODEL FOR THE PARTICLE AND IMAGING SYSTEM

We first describe the mathematical model for the particle4 which is a critical component of the system because
the model incorporates randomness in the description of the instances of the particle that belong to a particular
discrete class. The class of the ith particle is denoted by ηi ∈ {1, . . . , Nη} and is a random variable with
probability mass function qi which is not known. Let x ∈ IR3 (x, θ, and φ in spherical coordinates) denote three
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dimensional space (“real space”) and k ∈ IR3 (k, θ′, and φ′ in spherical coordinates) the corresponding spatial
frequency space (“reciprocal space”). The electron scattering intensity of the ith particle, denoted by ρi(x), is
described by a weighted linear combination of basis functions, specifically,

ρi(x) =

Nc(ηi)∑

τ=1

ci,τφ
(ηi)
τ (x) (1)

where the unknown weights are denoted by ci,τ , the known basis functions are denoted by φ
(η)
τ (x), and the

number of weights and basis functions is Nc(η). In x-ray crystallography or in other cryo EM algorithms, the
weights ci,τ are numbers and the goal of the computing is to determine numerical values for the ci,τ from the
data. Here we have generalized this idea: The ci,τ are random variables and the goal of the computing is to

determine the probability law for the random variables from the data. Let ci ∈ IRNc(ηi) be a random vector
with components ci,τ . In order to make the calculations practical, we assume that the ci (i ∈ {1 . . . , Nv}) are
independent random vectors and that, conditional on the value of the class ηi, ci is distributed according to
a Gaussian probability law with mean vector c̄(ηi) and covariance matrix Vηi

where c̄(η) and Vη are unknown.
The goal of the computing is then to determine c̄(η) and Vη (η ∈ {1, . . . , Nη}) from the data. The mean vector
c̄(η) describes the nominal particle for Class η while the covariance matrix Vη describes the heterogeneity of the
ensemble of instances of the particle in Class η. If there is no heterogeneity in a class then Vη = 0 and the model
simplifies to the model we introduced and used previously.7

Let χ ∈ IR2 denote two dimensional space in the images (“real space images”) and κ ∈ IR2 the corresponding
spatial frequency space (“reciprocal space images”). Let the real and reciprocal space images of the ith instance
of the particle be denoted by σi(χ) and Σi(κ), respectively. The theory4 applies to a general linear imaging
system where the linear transformation can depend on random variables so long as the random variables are
independent of the random variables that describe the particle. We assume that the image is sampled. Therefore,
if yNN

i denotes a vector constructed from noise-free (“NN” for “no noise”) samples of the ith image, there must
be a matrix L such that

yNN
i = Li(θi, ηi)ci (2)

where θi are the additional random variables that enter into the linear transformation. Finally, we assume that
the measured image, denoted by yi, is corrupted by additive independent and identically distributed noise where
the distribution of the noise is zero-mean Gaussian with covariance matrix Q. Let wi denote the ith realization
of the noise. Then the observed image, denoted by yi, is described by

yi = Li(θi, ηi)ci + wi. (3)

The fact that ci (conditional on the class label ηi) and wi are both Gaussian is important for practical computation
because a linear combination (as in Eq. 3) of Gaussian vectors is itself Gaussian with simple formulas for the
mean vector and covariance matrix.

In the cryo EM application, the linear imaging system denoted by Li(θi, ηi) is quite specific. In first-order
image formation theory,8–10 the reciprocal-space image Σi(κ) is the product of three factors.

1. The 2-D Fourier transform of the ith projection image which, by the projection slice theorem, can be
computed from the 3-D Fourier transform Pi(k) of the particle ρi(x) and the 3×3 rotation matrix Rαi,βi,γi

that describes the projection direction which is parameterized by the Euler angles (α, β, γ).

2. The contrast transfer function G(κ) which describes the electron-optical behavior of the microscope.

3. A complex exponential of the translation χ0,i of the projected location of the center of the ith particle
from the center of the ith reciprocal-space image.

The resulting equation is

Σi(κ) = exp(−i2πκ
T
χ0,i)G(κ)P (ηi)

(
R−1

αi,βi,γi

[
κ

0

])
. (4)
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Discretize κ to the values κ ∈ {κ1, . . . ,κNy
}. Let Φ

(η)
τ (k) be the 3-D Fourier transform of φ

(η)
τ (x) (Eq. 1). Then

the variables in Eqs. 2 and 3 have the following forms:

1. The jth components of yNN
i and yi have the forms Σi(κj) and Σi(κj)+wi,j , respectively, where wi,j is the

jth component of wi.

2. The (j, τ)th element of the matrix Li(θi, ηi) has the form

(Li(θi = (αi, βi, γi,χ0,i), ηi))j,τ = exp(−i2πκ
T
j χ0,i)G(κj)Φ

(ηi)
τ

(
R−1

αi,βi,γi

[
κj

0

])
. (5)

Conditional on the class η = η′, the statistics of ρ(x) are Gaussian and so are completely described by the
mean function ρ̄η′(x) and covariance function Cη′(x,x′) which are defined by

ρ̄η′(x)
.
= E[ρ(x)|η = η′] =

Nc(η
′)∑

τ=1

c̄(η
′)

τ φ(η′)
τ (x) (6)

and

Cη′(x,x′)
.
= E[[ρ(x) − ρ̄η′(x)][ρ(x′) − ρ̄η′(x′)]|η = η′] =

Nc(η
′)∑

τ=1

Nc(η
′)∑

τ ′=1

(Vη′)τ,τ ′φ(η′)
τ (x)φ

(η′)
τ ′ (x′) (7)

where the second equalities of Eqs. 6 and 7 are both due to Eq. 1. Let ˆ̄ρη′(x) and Ĉη′(x,x′) be Eqs. 6 and 7

evaluated at the estimated values of c̄(η
′) and Vη′ rather than the true values. For biological purposes, the natural

quantities to visualize are ˆ̄ρη′(x) and Ĉη′(x,x′), especially the case Ĉη′(x,x). The estimators used in this paper
are maximum likelihood (ML) estimators (Section 4). For such estimators, if y = f(x) and the ML estimate of
x is x̂ then the ML estimate of y is f(x̂) [11, Theorem 7.2.10, p. 320]. Therefore, ˆ̄ρη′(x) and Ĉη′(x,x′) are ML
estimates of ρ̄η′(x) and Cη′(x,x′), respectively.

3. CHOICES FOR BASIS FUNCTIONS

The coordinate system used to describe the particle and the basis functions φ
(η)
τ (x) can be chosen based on

attractive mathematical properties and/or on attractive modeling properties.

Because of our collaboration with Professor Johnson, we have focused on virus particles with icosahedral
symmetry. The symmetry implies that there is a unique location which is stationary under all of the symmetry
operations and we select that location to be the origin of the coordinate system. Because the viruses are roughly
spherical in shape, we use spherical coordinates.

Symmetry is a constraint on the electron scattering intensity ρi(x) and therefore on the unknown weights
ci,τ but it is attractive to have an unconstrained maximization problem result from the maximum likelihood

estimator. Therefore, selecting basis functions φ
(η)
τ (x) such that ρi(x) is symmetric for any choice of weights

ci,τ (Eq. 1) is attractive. Furthermore, the electron scattering intensity ρi(x) is real valued so it is attractive to

select basis functions φ
(η)
τ (x) which are also real valued so that the weights ci,τ can be real valued. Therefore,

we have factored the basis functions φ
(η)
τ (x) into a product of a function of x (“radial basis function”) and a

function of θ, φ (“angular basis function”). The symmetry constraint involves only the angular basis function.

For the angular basis functions we have derived so-called icosahedral harmonics12,13 where each basis function
is symmetric under all operators in the icosahedral group and the collection of all icosahedral harmonics is a
complete orthonormal basis for icosahedrally-symmetric square-integrable functions on the surface of the sphere.
The calculation is simplified by requiring each icosahedral harmonic to be a linear combination of spherical
harmonics of a single degree. For the radial basis functions we solve a Sturm-Liouville problem on [0, R2] for
spherical Bessel functions. The product of angular and radial basis functions is a complete orthonormal basis
for square-integrable functions in the interior of the sphere of radius R2. The index τ becomes a triple index
(l, n, p) where l ∈ {0, 1, . . .} is the degree of the spherical harmonics that are linearly combined to give the

Proc. of SPIE Vol. 9600  96000F-4

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 01/19/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



icosahedral harmonic, n ∈ {0, 1, . . . , Nl − 1 ≤ 2l} is an index describing which icosahedral harmonic of degree
l, and p ∈ {1, 2, . . .} is the index of the functions from the Sturm-Liouville problem where the Sturm-Liouville
problem itself is indexed by l. Hence the basis functions, which are usually the same for all classes (i.e., all values
of η), are φτ=(l,n,p)(x) = hl,p(x)Il,n(θ, φ).

Basis functions that are the product of these radial and angular basis functions have attractive properties.
From the point of view of mathematics, they are real valued, have all the symmetries of the icosahedral group,
and have simple symbolic formulas for their 3-D Fourier transforms. From the point of view of the application,
for particles which fit more tightly into a sphere than into a rectangular parallelepiped, they do not represent
the volume of real space where the electron scattering intensity of the particle is known to be zero and they also
provide a smooth representation of ρi(x) which can be evaluated at any value of x via Eq. 1.

A more sophisticated point of view is that the symmetry is a constraint on the statistics of ρi(x) rather than
on each individual realization of ρi(x). Because we have assumed that the weights ci,τ are Gaussian distributed,
a complete description of the statistics of ρi(x) is the mean function and the covariance function. We have
presented the constraints on the mean and covariance functions [4, Eqs. 55 and 56] and have determined how
these constraints control the statistics of the weights ci,τ when using a set of angular basis functions in which
each function transforms as one of the irreducible representations of the symmetry group.14 However, we do not
yet have complete software for this problem, specifically, in the estimation approach of Section 4, we do not have
update algorithms for the covariance matrices Vη (η ∈ {1, . . . , Nη}) which include the constraints on Vη that are
implied by this more sophisticated view of symmetry.

While symmetry is important for some particles, many other important particles, such as ribosomes, lack
symmetry. Without symmetries, the choice of spherical coordinates and harmonic angular basis functions is less
compelling. Most software systems use rectangular coordinates and voxel basis functions which fill a rectangular
parallelepiped and allow the use of many digital image processing ideas. However, especially for particles that are
more closely fit by an sphere than a rectangular parallelepiped, it is still feasible to use spherical coordinates and
harmonic angular basis functions and the natural angular basis functions are the so-called real-valued spherical
harmonics [7, p. 1717, column 1] denoted by ψl,n(θ, φ) and defined by

ψl,n(θ, φ) =






Yl,0(θ, φ), n = 0√
2ℑYl,(n+1)/2(θ, φ), n ∈ {1, 3, 5, . . . , 2l − 1}√
2ℜYl,n/2(θ, φ), n ∈ {2, 4, 6, . . . , 2l}

(8)

for n ∈ {0, . . . , 2l} where Yl,m(θ, φ) is the spherical harmonic of degree l and order m [15, Eq. 3.53, p. 99].
Changing the family of angular basis functions from icosahedral harmonics Il,n(θ, φ) to real-valued spherical
harmonics ψl,n(θ, φ) requires two changes to the software. First, the computation of Li(θi, ηi) (Eq. 5) must be
changed. Second, the integration rule used for integrating over the orientational nuisance parameters θi may
need to be changed since the rule only has to integrate over one fundamental domain of the symmetry group.
We have implemented the case of Eq. 8 in our software.

4. STATISTICAL ESTIMATORS

We compute a reconstruction by solving a maximum likelihood estimation problem for the unknown parameters
which are the a priori class probabilities (qη), the mean vector and covariance matrix for each class (c̄(η) and
Vη, respectively), and the covariance of the pixel noise vector (Q). We assume that Q is proportional to the
identity matrix, i.e., Q = λ2INy

where In is the n × n identity matrix. We have the theory for estimating the
a priori probability distribution on the orientational Euler angles (αi, βi, γi) but successfully used a uniform
distribution (i.e., Haar measure on the group SO3) in our calculations. We have assumed that the origin offset
χi,0 is uniformly distributed over a 2-D disk with known radius.

We have used an expectation maximization (EM) algorithm5,16,17 to compute the maximum likelihood esti-
mates where the nuisance parameters in the EM algorithm are the θi, i.e., the Euler angles (αi, βi, γi) and the
origin offset χi,0, and the class label ηi.

3,4 We do not have practical procedures for updating all parameters (qη,

c̄(η), Vη, and Q) simultaneously so we only update one or two at each iteration. Therefore, we are really using a
generalized EM algorithm.
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To save computation, when we update Q (really λ2) we replace the EM update with a moment estimator as
is described in the following. From Eq. 3 it follows that for every particle instance i, every component of the
vector

δi(θi, ηi, ci) = yi − Li(θi, ηi)ci (9)

has variance λ2 conditional on knowing the true values of θi, ηi, and ci. Define θ = (θ1, . . . , θNv
)T , η =

(η1, . . . , ηNv
)T , and c = (c1, . . . , cNv

)T . Define s2 by

s2(θ, η, c) =
1

NvNy

Nv∑

i=1

Ny∑

j=1

(δi(θi, ηi, ci))
2
j (10)

where (δi(. . .))j is the jth component of δi(. . .). Let θ̂ be the current estimate of θ and likewise for η̂. Let ˆ̄c
(η′)

be the current estimate of c̄(η
′) (η′ ∈ {1, . . . , Nη}). Then

λ̂2 = s2(θ̂, η̂, ˆ̄c
(η̂)

) (11)

is a natural moment estimator for λ2 where ˆ̄c
(η̂)

= (ˆ̄c
(η̂1)

, . . . , ˆ̄c
(η̂Nv )

)T . An alternative estimator is based on
weighted averages over the uncertain values of (θ, η, c). Specifically, the estimator is

λ̂2 =

∫

θ

∑

η

∫

c

s2(θ, η, c)p(θ, η, c)dθdc (12)

where p(θ, η, c) is the current a posteriori probability distribution on these variables. We actually use a hybrid
estimator defined by

λ̂2 =

∫

θ

∑

η

s2(θ, η, ˆ̄c
(η̂)

)p(θ, η)dθ. (13)

This estimator is straightforward to implement in our software. We have an excellent initial condition for
λ2 by estimating the value of λ2 by the image sample variance in a region of the image where there are no
particles. However, improving the estimate within the EM iterations appears to be important for experimental
data problems.

5. NUMERICAL EXAMPLE

Some bacteriophage have a “head” which is a shell of protein (the “capsid”) containing the phage’s genome and
a “tail” which is the component of the phage that recognizes a new host cell and through which the phage’s
genome is injected into the new host cell in order to initiate an infection. Typically, the head has icosahedral
symmetry except in the region where the tail is attached where often a pentamer of the peptides that form the
capsid are replaced by different peptides. Structural biology studies of the bacteriophage Hong Kong 97 (HK97)
often use so-called “Virus Like Particles” because the wild-type bacteriophage has a flexible tail while VLPs that
are only the head of the bacteriophage can be produced in bacteria that have been engineered to produce the
capsid protein molecule. Because only the capsid proteins are produced, the VLP has icosahedral symmetry.
While the head of the wild-type bacteriophage contains the viral genome, the VLP contains random cellular
nucleic acid molecules. The algorithm of this paper was applied to a set of 1200 200 × 200 images of VLPs
randomly selected from a larger collection provided by Professor J. E. Johnson and Dr. D. Veesler (both The
Scripps Research Institute). Six example images are shown in Figure 2. The fact that the images in Figure 2(a)
and Figure 2(b) are different in appearance emphasizes the need to include accurate and possibly even per-
image contrast transfer functions in Eq. 4, i.e., Gi(κ) or possibly Gi(κ) which would allow for the inclusion of
more detailed microscope aberrations. This is a challenging software engineering problem in our current Matlab
software because it interferes with the matrix-matrix nature of the software which is important for the speed of
the software.

A reconstruction using one class (Nη = 1) and 1060 basis functions based on icosahedral harmonics (all l ≤ 55,
n, and p ≤ 20) was computed starting from an initial condition where no heterogeneity was allowed (i.e., V = 0).
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Figure 2. So-called boxed images extracted from the cryo EM micrographs of HK97. The images in Panel (a) versus in
Panel (b) differ in the Contrast Transfer Function (CTF).

Figure 3. Surface from the mean ˆ̄ρ(x) colored by the square root of the variance
√

Ĉ(x,x) for the HK97 reconstruction.
Visualization by UCSF Chimera.18
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Figure 4. Serial cross sections of the mean ˆ̄ρ(x) in the reconstruction of HK97 where all sections are perpendicular to the
z axis which is a 5-fold symmetry axis. The cube has a 1Å sampling interval and extends from -300Å to +300Å in each
of the three rectangular coordinate directions. The slices are at z ∈ {−250,−200,−150,−100,−50, 0}Å and the other
hemisphere can be filled in by icosahedral symmetry.
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Figure 5. Cross sections of the mean ˆ̄ρ(x) in the reconstruction if HK97. Each cross section is through the center of the
particle and perpendicular to one of the three types of rotational symmetry axis.
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Figure 6. A typical histogram of d(Rinitial, Rfinal) for the subset of images for which the orientation estimate changed
during the heterogeneous HK97 reconstruction.

The mean vector c̄ and covariance matrix V of the weights in the orthonormal expansion for ρ(x) (Eq. 1) imply
the mean function ρ̄(x) and the covariance function C(x1,x2) of the electron scattering intensity (Eqs. 6 and 7).
Figure 3 shows the external surface of the particle based on contouring the mean function ρ̄(x) and the surface
is colored by the standard deviation function

√
C(x,x). The peak standard deviation is 2.23 × 10−3 while the

average of the mean function is 4.88 × 10−4 so fluctuations can be substantial. The space-varying nature of the
fluctuations is natural since in previous cases3 it has been related to the functionality of the particle which is space-
varying. While Figure 3 shows the surface of the particle, it is important to emphasize that the reconstructions,
both mean and covariance, are 3-D. Therefore, in Figure 4 we show serial cross sections through half of the
particle in order to demonstrate the 3-D nature of the reconstruction. Furthermore, in Figure 5, we show cross
sections perpendicular to the three types of symmetry axis that occur in an icosahedrally-symmetric particle
in order to demonstrate how use of these basis functions exactly and automatically enforces the icosahedral
symmetry. In both Figure 4 and Figure 5 the capsid wall is clearly seen and the lack of structure in the internal
cavity reflects the fact that the cavity is filled with random pieces of cellular nucleic acid.

In comparison with standard calculations, the calculations described in this paper extract additional infor-
mation from the images because the continuous heterogeneity within each discrete class is characterized through
the covariance matrices Vη. (In the HK97 example, Nη = 1 so η = 1 always). However, the calculations de-
scribed in this paper also offer the possibility of improved quality for the nominal reconstruction because the
heterogeneity of the particle is explicitly described in the calculations. One sense in which this can be observed
is in the quality of the projection orientation estimates, i.e., the estimates of the Euler angles (αi, βi, γi) for the
ith particle. Define the projection orientation of an image as the Euler angles of the integration abscissa for
which the conditional probability density function is maximal. Following Huynh [19, Eq. 21], define a measure
of difference between two rotations R1 and R2 by d(R1, R2) = ‖I3 − R1R

T
2 ‖ where ‖ · ‖ is the matrix norm

induced by the Euclidean vector norm (the largest singular value). Since RT
2 = R−1

2 , d achieves its minimum
possible value of 0 whenever R1 = R2. Since ‖I3 − R1R

T
2 ‖ ≤ ‖I3‖ + ‖R1R

T
2 ‖, both I3 and R1R

T
2 are rotation

matrices, and the singular values of a rotation matrix R are the eigenvalues of RRT = RR−1 = I which are all 1,
it follows that d(R1, R2) ≤ 2. When using the algorithm and software described in this paper, we first compute
a reconstruction with no heterogeneity (i.e., V = 0) and then allow heterogeneity (i.e., V 6= 0). Let Rinitial be
the projection orientation estimate with V = 0 and Rfinal be the estimate with V 6= 0. The true projection
orientations are not known for the HK97 data. Therefore, we cannot compare true and estimated projection
orientations. Instead, we compare Rinitial and Rfinal. The integration rule used in the HK97 example covers three
fundamental domains of the icosahedral group for (α, β) and all of γ and contains 5000 abscissas so it is of only
moderate resolution. At this resolution, only about 10% of the projection orientations change between Rinitial

and Rfinal. However, as is shown in the the histogram of d(Rinitial, Rfinal) displayed in Figure 6, a majority of
the projection orientations that do change are changed by a large amount and therefore contribute substantially
differently to the nominal reconstruction.
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Calculations on a range of genetic mutants of the HK97 particle are underway in the hope that comparison
between the wild-type and the mutant reconstructions will lead to insights into the functioning of the particle.

6. SUMMARY AND DISCUSSION

In this paper we describe mathematical models, algorithms, and software which simultaneously compute a
nominal reconstruction of the particle and characterize the heterogeneity of the instances of the particle from
single-particle cryo electron microscopy images. The characterization of heterogeneity is complete in the sense
that the mean function (the nominal reconstruction) and the complete covariance function of the electron scat-
tering intensity are provided. While related work exists,20–23 much of the related work is based on postprocessing
with resampling which does not jointly estimate the nominal reconstruction of the particle and the heterogeneity
of the instances of the particle, is computationally quite expensive, and does not usually provide the complete
covariance function of the electron scattering intensity of the particle so that the characterization of heterogene-
ity is limited. The approach used in this paper is maximum likelihood estimation computed by a generalized
expectation maximization algorithm and implemented in Matlab. Due to the characterization of heterogeneity
and the maximum likelihood approach, these are large computations and we are presently investing substantial
effort in improving our software system so that it will be more attractive to the structural biology community.
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