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Abstract: Electron microscopy provides images of macromolecular complexes from
which the 3-D structure of the complex can be computed when all instances of a com-
plex are identical. An algorithm for characterizing the 3-Dspatial statistics of the complex
is described and demonstrated for the important case when different instances are not identical.
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1. Introduction

Biology includes many macromolecular complexes in the sizerange of roughly 101–102 nanometers, such as viruses,
chaperonins, ribosomes, apoptosomes, transcription factor IID, etc. These nanoscale machines typically self assemble
and have a variety of “stages” in their existence. They sometimes have variable stoichiometry of their chemical con-
stituents. They typically are subject to motions and these motions are central to the functioning of the machine, such
as a ribosome moving down a mRNA molecule as the triplets of mRNA bases are translated into amino acids in the
growing peptide polymer.

Electron microscopy, especially in the form of single-particle cryo electron microscopy (cryo EM), is transforming
structural biology, i.e., the study of the geometry of the macromolecular constituents and how the geometry influences
the function of the machine. In these experiments, individual complexes (often described as “particles”) are imaged,
so the ability to create a crystal (2-D or 3-D) is not required. Usually the images are recorded from unstained particles
in order to minimize distortion so contrast is low. The imageis roughly a tomographic projection of the particle’s
electron scattering intensity along the optical axis of themicroscope. The fact that the electron beam rapidly damages
the particle has several implications. (1) The beam currentis minimized leading to images with SNR substantially less
than one. (2) The experiment is done at cryogenic temperatures in order to minimize the damage and the freezing is
done at a fast rate in order to create vitreous solid water rather than ice since the increase in volume from liquid water to
ice would tear apart the particles. (3) Only one image is taken per particle so a 3-D reconstruction requires combining
information from many particles. In many experiments it is not possible to have any control over the orientation of the
particle as it is placed in the microscope. Furthermore, thepoor SNR makes it difficult to determine the orientation
from the image. Therefore, reconstruction generally involves both determination of the projection orientation of each
image as well as the 3-D structure of the particle.

The standard assumption is that the particles are essentially identical, or at worst come from a few classes of
particle and each particle in a class is essentially identical, and we describe this situation as a homogeneous ensemble.
However, when different particles have variable stoichiometry or when motion is important, then there are differences
between particles even within a single particle class, and we describe this situation as a heterogeneous ensemble and
characterizing the heterogeneity is important for understanding the functioning of the particle. A statistical pointof
view for characterizing heterogeneity has been developed [1] which has many attractive properties relative to the
primary alternative which is a resampling method [2] and current work is described.

2. Statistical image processing

For a wide range of resolution, the ideal image is a linear function of the 3-D electron scattering intensity of the particle
which is described as a linear combination of known basis functions. Therefore, ifzi is theith noise-free image arrayed
as a vector and the weights in the linear combination for theith image are the vectorci then there is a matrixL(θi)
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whereθi describes the projection orientation (e.g., Euler angles)such thatzi = L(θi)ci. The first source of uncertainty
in the image isθi. The second source of uncertainty is pixel noise which includes electron counting noise (the typical
dose is tens of electrons per pixel) but also includes many other causes such as variability in the ice. In order to arrive
at a computable solution, we have used an additive zero-meanwhite Gaussian noise model where the noise variance is
Q. The third source of uncertainty (our primary innovation) is the description of particle heterogeneity by describing
ci as an i.i.d. realization of a Gaussian random vector with unknown mean vector ¯cηi and unknown covariance matrix
V ηi whereηi is a discrete random variable that is the class of theith image. The fourth source of uncertainty isηi. Let
yi be the experimental image arrayed as a vector. Thenyi = zi +wi = L(θi)ci +wi wherewi is theith realization of the
pixel noise and the goal of reconstruction calculations is to determine ¯c andV from a collection ofyi (i ∈ {1, . . . ,Nv}).

If yi = ci and the goal is to determine ¯cη andV η from a collection ofyi by maximum likelihood (ML) estimation
then there is a standard expectation-maximization algorithm [3] which usesηi as the so-called nuisance parameters.
Our work is a generalization of this algorithm. In particular, the nuisance parameter is now(θi,ηi), there is a linear
transformationL, and there is an additive noisewi. One point of view on this generalization is that we are attempting
to partition the variability in the images among multiple sources: orientation (θi), class (ηi), pixel noise (wi), and
heterogeneity (ci). In this point of view, one would expect that it is necessaryto estimate the pdf onθi, q j (the pmf on
ηi), Q (the variance ofwi), and ¯cη andV η (the mean and covariance ofci) even though only ¯cη andV η are of biological
interest. While we have an algorithm capable of doing all of this, in our calculations to date it has not been necessary
to estimate the pdf onθi, possibly because the virus particles we have worked with are approximately spherical in
shape so that assuming a uniform pdf onθi, i.e., Haar measure on SO3, is an sufficiently accurate approximation.

3. Statistics with symmetry, understanding the reconstruction, and parallel computing

Some particles (many viruses) have symmetry. For a particular class, letρ(x) be the electron scattering intensity as a
function of 3-D coordinatesx in real space andRβ (β ∈ {1, . . . ,Ng}) be the set of 3×3 orthonormal rotation matrices
that describe the symmetry. In a homogeneous ensemble, symmetry of ρ meansρ(x) = ρ(R−1

β x) for β ∈ {1, . . . ,Ng}.
This requirement can be built into the basis functions by choosing functions that transform as the identity represen-
tation of the symmetry group. In a heterogeneous ensemble,ρ is random with mean̄ρ(x) and correlation function
rρ(x1,x2) and symmetry ofρ meansρ̄(x) = ρ̄(R−1

β x) andrρ(x1,x2) = rρ(R−1
β x1,R

−1
β x2) both for β ∈ {1, . . . ,Ng}.

This is a more complicated situation and requires basis functions that transform as all irreducible representations ofthe
symmetry group and requires a structure onV . However, if the biology questions can be answered by the space-varying
variance ofρ alone, i.e.,s(x) = rρ(x,x), then the situation is simpler. In particular,s(x) = s(R−1

β x) for β ∈ {1, . . . ,Ng}

so using only basis functions that transform as the identityrepresentation of the symmetry group will achieve the
necessary symmetry.

The correlation functionrρ(x1,x2) is a large amount of information because it depends on 2×3 = 6 independent
variables. Rather than visualizerρ , we are attempting to understandrρ by computing mathematical mechanical models
such that the equilibrium statistical mechanics correlation function of the model matches the correlation function
estimated from the image data and then computing properties(such as normal modes) of the mechanical model.

High spatial resolution is always a goal in structural biology, at least to the order of 2̊A resolution. Such goals, not yet
achieved since current high resolution homogeneous reconstructions are at approximately 4Å resolution, require large
numbers of images and basis functions and therefore substantial computation. The algorithm’s primary calculation is
integration over the nuisance parameters. There are at least two opportunities for parallelism: partition the region of
integration and integrate over subregions in parallel (which is in our current software) and partition the set of images
and compute in parallel on different subsets. Some of the calculations, such as evaluation of basis functions, appear
to be ideally suited for general purpose GPUs. Current software development focuses on incorporation of parallelism
at the multicore, GPU, and multi compute node levels via C, C++, OpenMP, CUDA, and MPI in an effort to take
advantage of all opportunities that may be available in a user’s computing system.
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